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We study the problem of concentration fluctuations in polymer solutions under the influence of spa-
tiotemporal correlated noise. We find that in contrast to the case of white noise, where the dynamic
structure function is characterized by a single decay rate I'; which is given in terms of the static struc-
ture function g (k) in the colored noise case, the decay rate takes a different form depending on a charac-
teristic wave vector «, given by the solution of the equation 1+ &% —7T",=0, with £ being the correla-
tion length of the polymers and 7 being the correlation time of the colored noise. For the wave vector
k <<k, the decay rate is I';, just as in the white noise case. For k =k, the decay rate is I',, but the decay
is modified by an extra factor (1+T.f) where ¢ is the time. For k >>k, the decay rate is (1+£%k?2)/7.
Since our result should hold as long as the correlation time 7 is not exactly zero, it should lead to experi-
mentally verifiable consequences in dynamic light scattering in polymer solutions in short time scales.

PACS number(s): 36.20.—r, 05.70.Ln, 05.40.+j, 02.50.—r

I. INTRODUCTION

Many problems in nonequilibrium statistical mechan-
ics are modeled by Langevin equations [1-6]. For in-
stance, the application of Langevin equations to describe
surface growth [7-13] and self-organized criticality
[14,15] are recent active areas of research. In these equa-
tions, a stochastic term (r,?) is added to the macroscop-
ic and deterministic equation of the form

—aa—'f—=f([¢(r,t)] VY, V) +(r,t) . (1)

Here ¢(r,t) is the relevant variable of the system and the
first term on the right-hand side is a deterministic force.
7(r,t) is a stochastic term called noise, which is usually
assumed to be Gaussian and accounts for either internal
degrees of freedom or fluctuations in the constraint im-
posed externally on the system. In the first case, the
noise is called internal noise and is assumed to be white
noise. That means the value of the random field at a
given point and at a given time does not depend on its
value at other points or at other times:

(n(r,t)n(r',t"))=2A48(r—1")8(t —1") , ()

where A is the strength of the noise and { ) denotes an
average over the probability distribution of the random
field. In the case of external noise, or noise coming from
fluctuations in the constraints imposed externally on the
system, the correlations of the random field between
different points and times could be nonzero. In this case,
the spectrum of the noise in both momentum k and fre-
quency o is no longer constant, so one speaks of colored
noise. Colored noise is of practical interest in many
branches of physics and in engineering and has been ex-
tensively studied [16—22]. Recently, colored noise has
also been used in nonequilibrium surface growth models
[9,13].

The most famous example of colored noise is the
Ornstein-Uhlenbeck process, which is Gaussian and has
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zero mean and a correlation given by [6,23]
(G, 06t ) =He 1 Vip(r—r), 3)

where 7 is the correlation time of the colored noise, i.e., a
measure of its memory in time. The stochastic
differential equation which governs its evolution is

g__1 1
ot . §(e)+ - 7(t) , 4)
where 7)(t) is white noise following (2) without spatial
dependence.

Recently Garcia-Ojalvo, Sancho, and Ramirez-Piscina
[24] proposed a generalization of this very simple idea to
take into account the finite correlations in space as well.
The simplest stochastic differential equation modeling
such a noise is the following reaction-diffusion equation:

86 _ 1. 2oy 1
o C1=AVe+—(r,0) (5)
where 7(r,t) is again a white noise term obeying (2) and A
is the correlation length of the colored noise. We [25]
have calculated the correlation which is a generalization
of (3) to colored noise obeying (5). Its spatial Fourier
transform has the form

A exp[—|t—t'|/r—AK*t—1'| /7]
T 1+A%k?
X&8(k—k') . (6)

(§(k,0E(k",t")) =

This reduces to the white noise case (3) for A and (7)
equal to zero.

In this paper we apply spatiotemporal colored noise to
the problem of concentration fluctuation in polymer solu-
tions. The Fourier transform c, of the polymer segment
density c(r) is assumed to be described by the phenome-
nological Langevin equation [26]

ac k

7=—r‘kck+rk(t) > (7)
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where I'y is given in terms of the static structure function
g(k), and r,(t) is a stochastic noise term. We calculated
the dynamic structure function which is related to the
time correlation function {c,(t)c,.(t')) for the case of
spatiotemporal colored noise of the form (5) and (6). We
find that contrary to the white noise case, where the dy-
namic structure function is characterized by a single de-
cay rate given by I'y, in the colored noise case the decay
rate of the dynamic structure function has a different
form depending on a characteristic wave vector k given
by the solution of the equation 1+A%?—7I',=0. For
k <<k, the decay rate is I'y, just as in the white noise
case. For k=k, the decay rate is I',, but the decay is
modified by an extra factor (1+1T',¢) where ¢ is the time.
For k >>k, the decay rate is (1+A%k2)/7. Also, from the
scaling form of the static structure function, it follows
that A=¢, where £ is the correlation length of the poly-
mers. Therefore there is only one free parameter, which
is the correlation time 7 of the colored noise. At the 0
point of the polymer, where the correlation length £
diverges, there is again only one decay rate I'y. Our re-
sult for the behavior of the dynamic structure function
should hold as long as 7 is not exactly zero. Therefore it
should lead to verifiable experimental predictions in dy-
namic light scattering in polymer solutions in short time
scales.

In Sec. II we will review the background theory on the
dynamics of concentration fluctuations in polymer solu-
tions. In Sec. III we will discuss dynamic light scattering
in the case of white noise. In Sec. IV we will describe our
result for dynamic light scattering in the case of spa-
tiotemporal colored noise. Section V covers discussions
and conclusions.

II. DYNAMICS
OF CONCENTRATION FLUCTUATIONS

Let us first consider the static properties of concentrat-
ed polymer solutions in equilibrium. Let R, be the posi-
tion of the nth segment of the ath chain. The equilibri-
um distribution function for R, is given by [27]

Y[R, ] <exp{ —(Uy[R,, ]+ U [Ry, ) /kpT} , (8)
where
Uo[Ry, 1/kp T= 2 b,_ n Ry 1) 9)

is the energy of the chain connectivity and

Ui[Ry, 1/kpT=1 3 3 v8(R,, —Rp,,) (10

a,Bn,m

is the Edward Hamiltonian for the excluded volume in-
teraction, which includes both the intramolecular in-
teraction a=p and the intermolecular interaction a#p.
Here b is the effective bond length or Kuhn length of the
polymers, v is the excluded volume parameter which can
be regarded as the virial coefficient between the segments,
and kj is the Boltzmann constant.

Instead of describing the problem in terms of R, it is
more convenient to focus attention on the local segment

density c(r), which can be considered as collective coor-
dinates, defined by [27,28]

c(r)=3 8(r—R,,), (1n

,n
and consider the distribution function ¥(c(r)) for c(r).
This method is effective if the physical quantity under
consideration can be expressed by c(r). For the

mathematical development, it is convenient to use the
Fourier transform of ¢(r):

1o . 1 .
~7fd rexp(1k~r)c(r)—;az:lexp(tha,,) , (12

c(r)=3 c exp(—ik-r)
k

I

d’k cpexp(—ik-r) , (13)
2m7)} f KexP

where V is the volume. In the representation of {c, |, not
all ¢, are independent of each other since ¢, and ¢ _, are
related by

c_y=cyp . (14)

In order to generalize this approach to dynamical
problems, a central assumption is made that the set of
coordinates {c,} are good variables for characterizing
the state of the system, and that a closed equation can be
constructed for their evolution. This approach is quite
analogous to the critical dynamics for binary solutions of
low molecular weight [29], where the dynamics of the
system is described by the phenomenological Langevin
equation [26]

d aU( {Ck} )
3 Sk —Zka 3 +tre, (15)
where U({c,}) is the free energy, Ly, are phenomeno-

logical kinetic coefficients, and r, are Gaussian random
variables satisfying

(re)=0, (r(r.(t")=2kgTL8(t—1'), (16)

where T is the temperature. For polymers, the validity of
this equation is not obvious since the description of the
polymeric system by the collective coordinates {c,}
disregards the chain connectivity, and therefore neglects
the entanglement effect. However, for time scales shorter
than the repetition time 1, this is not a serious problem,
and many experiments related to concentration fluctua-
tions are concerned with the short time-scale motion.

In the Gaussian approximation [26] the free energy
U({cy}) is given by

vV

U({Ck}) kBTz (k)CkC kK > a7n

where g (k) is the static structure function and c is the
average concentration.

To determine L., we use the Langevin equation for
R,,, the position vector of the nth segment in the ath
chain [26]
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aU[R,,] Ton = Hongm fom » (22)
%Ran-—'z Heppm* 3R = +f,,m] , (18 oo
B,m Bm
and
where H,,g, =H(R,, —Rg, ) is the mobility matrix, _
with m and n denoting segment and a and B denoting the (1a,(1)=0, 23)
chain numbers, respectively. It has the form [26] (L (00 (£)) =2k TH 4 g 8 —1') .
3 A
Hyngm = ?‘;—%I—ngexp[iq-(kan —Ryg,)], (19)  Fourier transforming the last equation:
™) 19
where I is the identity matrix, 7; is the viscosity, and fg,, 9 N I oR,, o
is the random force on the mth segment of the Sth chain ot cilt) V%, ik ot explik-Rgp)
with moments given by
_1 . dU[R,, ]
(fan(t)>=0 , 20) —T/- zﬁ ik _Hanﬁm‘ aRB an
an,pm m
(FantOf gms(t')) =2kpT8,68,,,8,,8(t —1') . Xexp(ik-R,,) . (24)
where I, J=x, y, or z denote the components of the ran-
dom force f. Equation (18) can be rewritten as Comparing with (15), we have
3, _ dU[R,,] _1 o, .
E;Ran——ﬁz Hanﬁm""siﬂ—"rra" , (21) ’k(t)—VElk‘fan(t)eXP(’k'Ran) . (25)
. ,m m an
with Using (25) and (23), it follows that
|
1 i(kR, +kK" Ry )
(n(Or (1)) =—— 3 k(r,,(t)rg, (') k'e Bm
an,Bm
==L > 2k, T8 — 1)Kk H, 5, exp(ik-Ry, +ik' Ry, ) - (26)
an,Bm
Using (19) for H, we have
2 d3 T —(L.A ' . .
(r(Or(t)) = -?8(t—t')kBTf (27%3 k-k ;quz)(ki) % expli(k+q)-R,, +i(k'—q)-Rg,, ]
s an,Bm
d’q k'k'—(kG)k'q)
=—26(t—t")kgT Cx+qCk—q - 27
B f (2m)} ,,Isqz ktq-k'—q
[
Comparing (273) and (16), we have <ka’ >eq=8k—k'Lk , 31)
ka’=—f d q3 k-k —(k-qz)(k .q)ck+qck’—q ) 28)  with
(2m) 19 o K= (ed)?
c —_ .
Equations (15), (17), and (28) give a nonlinear equation Lkz';f (2133 z(L gk+q). (32)
for c¢,. To proceed further, we use the preaveraging ap- 4
proximation, i.e., replace L. by its average in equilibri- Therefore the Langevin equation (15) becomes
um [26],
- 3 =, 20D (33)
Ly — (L )eg=— f g kk'—(kq)k"q) 3 * ‘ dc_y ndt
= (2m)° n,9°
In the Gaussian approximation, U({c,}) is given by (17).
X {CrtqCir—q eq - (29) . Thus the Langevin equation (33) becomes

Now the equilibrium average {cy;qCyr4q)eq is just the
static structure function:

(Crrqti—q)eg= 38k + Q)8 . (30)

This gives

ack
—a—t_=_rkck+rk(t) >
where
L
rk=K BT_k

¢ glk)’

(34)

(35)
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or using (32),
d’g glk+q) k*—(k-§)?
=kpT . 36)
L o (

Equation (34) is the basic equation for the dynamics of
concentration fluctuation. We will study this equation
for the case of spatiotemporal colored noise. But first we
will review the case when r, is white noise.

III. DYNAMIC LIGHT SCATTERING
WITH WHITE NOISE

Equation (34) has the solution
()= f:wds exp[ — T (t—3)]ri (s) . (37)

For white noise, (16) becomes

(re)=0, (r(rg(t'))=2kpTL, 8, 8(t—1t'). (38)

Using (37) and (38) we obtain the time correlation func-
tion

(Ck(t)CAk(tl)>:<Ckc_k)Cxp('—rk“"t’l). (39)
Here the dynamic structure function
g(k,t *“(ck(t c_(0)) =g (k)exp(—Tt) (40)

is a single exponential decay with time. The exponential
decay is correct for 1 —0. In fact, I', as given in (36) is
the exact initial decay rate [26]. However, theory is still
lacking for the behavior in the whole time scale. Experi-
mentally, it has been observed [30-32] that in some sys-
tems, the structure factor does not decrease in a single ex-
ponential manner and has a long tail. The long time-
scale behavior is considered to be related to the topologi-
cal interaction due to the impossibility of chain crossing.
However, quantitative theory is not yet given. In the
next section we will discuss the effect of spatiotemporal
colored noise on the dynamic structure function. But
first we want to give the form of I'y in the Gaussian ap-
proximation in which the distribution of ¢, is Gaussian
[26]. In that case, the static structure function g (k) has
the form [26]
12

g(k) bk 4E D) R (41)
where b is the Kuhn length and & is the correlation
length

E=b2/(12cv)'"? (42)

with v the excluded volume parameter in the Edward
Hamiltonian. Using this form of the static structure
function in (36), one finds [26]

f°° 1+k2§2 k’+q%. |k+q )

= 4777; 1+¢2827 | 2kq k—q

= k2F(KE) , 43
p——: F(k§) (43)

where

3 1+x?

F(x)=4 .3

[x +(x*—1)tan" !x] . (44)

IV. DYNAMIC LIGHT SCATTERING
WITH SPATIOTEMPORAL CORRELATED NOISE

Instead of the white noise (38), we can use spatiotem-
poral colored noise with correlations [24,25]

(ry =0,
(45)
kpT8, Ly
(1+A%k%)r
Xexp[ —(1+A%k2)|t—1t'| /7],

<rk(t)rk'(t’))=

where the two parameters A and 7 are the correlation
length and correlation time of the colored noise. For A
and 7 equal to zero, (45) reduces back to the white noise
case (38). For A=0, (45) reduces to the well known
Ornstein-Uhlenbeck process of temporal colored noise.
Equation (45) represents a natural generalization of the
Ornstein-Uhlenbeck process to take into account finite
correlations in space as well as in time.

The solution of (34) for ¢, is still given by (37). Calcu-
lating the time correlation {c(¢)cy(¢')) for the case of
spatiotemporal colored noise (45), we obtain (see Appen-
dix A)

kpT6, L
(ep(the (2))= 2 2B - Iz‘ 2k2 2
(1+A2)[(1+ A% 2 —7TE]
Iy
i
_ Teu'-/\lklm r . (46)
For t =t’, we have
kyTL
<Ck(t)c—k(t)>: - : : “7)

(1+A2%k 20 (1+ A%k 2 +7Ty)

The static structure function g (k) is given by

g(k):—cV_<Ck(t)C_k(t)>

Vv Ly
=—kgT 27,2 272 ’ (48)

with L, and T', given by (32) and (36).
structure function is given by

The dynamic

g(k,t) _—(Ck ) _(0))
(1+}\'2k2)eArkx_,rr\ke*(l+7\2k2)t/-r
=g(k) . (49)
1+A2k2—1T,

For A and 7 equal to zero, (49) reduces to the white noise
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case (40). In order to discuss the consequence of (49) we
need to know some properties of the function I'y. In the
Gaussian approximation, I'y is given by Egs. (43) and
(44). From Egs. (43) and (44) one finds that

kyT
I,=-—2—k?, k&>>1 (50)
167,
and
kyT
I=——k?, kE<<1. (51)
167 €

From (49) and (50) we can see that unless 7 is exactly
zero, for large enough k, the denominator in (49) will
change sign. Let us denote by « the value of k at which
the denominator in (49) vanishes,

1+A%>—7T,=0 . (52)

At this value of k, the exponentials in (49) become equal
and the numerator in (49) also vanishes. For k close to «,
let 7T, =1+A%’+e. In the limit e—0, we have

gli,t)=g(k)(1+T tlexp(—T,t), k=k. (53)

For any finite 7, at k <<«, we have 1+x?k2>>7T"; and
we have the white noise behavior (40) of one decay rate
I'y. For k =k, the decay rate is given by I',, but the de-
cay is modified by the extra factor (1+T',¢), as is given in
(53). For k >>«k, such that 1+A%k%<<7T,, the decay is
given by the second exponent, with decay rate
(1+A2k?)/r. We can therefore write the behavior of the
dynamic structure function in these different k regions as

gkle T Kk <<k
gle,t)=lg)1+T e '~ , k=« (54)

g(k)e —(l+kzk2)t/-r, k>K

with « given by (52). For a general wave vector k, the de-
cay consists of a sum of two exponentials as given in (49).

If the static structure function g (k) is assumed to have
the scaling form [26,33] g (k)=f,(&k) with & the correla-
tion length of the polymer, as is shown explicitly in the
Gaussian approximation in (41), then from (32) and (36),
both L; and I'; would have scaling forms L, =f,(k§)
and I', = f;(k§). Then Eq. (48) implies that A=§, where
the correlation length £ of the polymer is given by (42) in
the Gaussian approximation. Therefore the only free pa-
rameter in the spatiotemporal colored noise is the corre-
lation time 7 of the noise. At the 0 point of the polymers,
the excluded volume parameter v vanishes. In that case,

the polymer correlation length £ diverges according to
(42). Then (49) shows that the decay of the dynamic
structure function is again a single exponent with decay
rate I'y.

V. DISCUSSIONS AND CONCLUSIONS

We have presented the result for the dynamics of con-
centration fluctuations in polymer solutions with spa-
tiotemporal colored noise. We find that the decay rate of
the dynamic structure function takes a different form de-
pending on a characteristic value of the wave vector «
given by the solution of the equation 1+£&%?*—+T",=0,
where § is the correlation length of the polymers and 7 is
the correlation time of the colored noise. For k <<k, the
decay rate is 'y, just as in the white noise case. For
k =k, the decay rate is I',, but the decay is modified by
an extra factor (1+T,¢), where ¢ is the time. For k >>«k
the decay rate is (1+£2k?2)/7. At the @ point of the poly-
mer when the polymer correlation length diverges, the
decay of the dynamic structure function is again a single
exponent with decay rate I';,. Since the description of the
polymer system by the collective coordinates {c;} disre-
gards the chain connectivity and therefore neglects the
entanglement effect, it applies only for time scales shorter
than the repetition time 7,;. This is not a serious prob-
lem, since many experiments related to concentration
fluctuations are concerned with the short time-scale
motion. In this case our result should hold as long as the
correlation time 7 of the colored noise is not exactly zero.
Therefore we expect that our result has verifiable conse-
quences in dynamic light scattering experiments on poly-
mer solutions in short time scales.

Our spatiotemporal colored noise given in (45) is of
short range in space and time. The effect of long range
colored noise on a dynamical system has also recently
been studied [9,13]. Its effect on the dynamics of non-
equilibrium systems is even more drastic. In many cases,
long range correlated noise even changes the dynamic
universality class of the system [9,13]. The effect of long
range colored noise on the concentration fluctuations of
polymer solutions will be a subject of future study.
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APPENDIX A

Using (37) and (45) we write

(ck(t)c_k(t'))=f: dsf_t' ds'exp[ — T (1 —s)]exp[ —T _(t'—s" ) rp(s)r _i.(s"))

(1+A%k?)

t t —IDy(t—s) —T_ (t'—s') _ 252y —g'
f dsf ds'e K e k e —(1+1% Ns—s'l/7 .
— —®

(A1)

We first calculate for the case t <t’. In this case (A1) can be written as
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kpTL,
(1+12%?)

(Ck(t)c_k(t’))=
Calculating the integrals we obtain

kyTL,
(1+A2kH)[(1+ A% 2 —7TE]

(cp(the_y(£'))=

1+A%? Gt =)
Ty

X

— 22y 4y
—re (1+A°k )t t)J .

—TI (t+1") t T s s’ 2,2y o — t I, s 2,2 ot
e K f dse & [f ds'e ¥ e +A%ks S)/‘T+f ds'e 1+ XkNs—s")/T
- 00 — 5

(A2)

A similar equation can be obtained for the case ¢ > 1"
Therefore we have in general

B kpTL,
(1+A22)[(1+ A%k )2 — T3]

(cpltle _(2')

. 1+A%? o T
Iy
—(1+ A2k D=1 /7

—Te .
)
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